
SIXT33N Project Report

By: Eric Gan, Shloak Jain, Arjun Mishra

Circuit

Final Design

Power Supply

We powered SIXT33N with two 9V batteries. One of the batteries powered the two motors, while
the voltage from the other battery was regulated to 5V via a voltage regulator. This powered the
MSP, which output 3.3V to the rails. We added decoupling capacitors between the rails and the
grounds to remove large fluctuations in voltage inputs.

Mic Board

The Mic Board circuit is divided into 4 main sections, the Mic Gain, Bu↵er, Remove Mic Drift,
and Variable Gain Amplifier which serve to make incoming signals easier to process by the rest
of the front end circuit. In our circuit, the microphone acts as a variable current source. Since
we are assuming our op-amps our ideal, no current flows into them which means that all the
current flows through the resistor. Therefore the voltage of the positive terminal is represented by
Vdd � Vss � i1000⌦

Microphone Gain

When the microphone detects external sounds, the signal passes through the mic gain, which is
represented by a variable current source as the signal has variable amplitude.

Bu↵er

This is just a unity bu↵er we utilize to prevent the op-amp and capacitor from a↵ecting the
microphone. No gain occurs in this stage.

Remove Microphone Drift

This described as a coupling capacitor which acts as a high pass filter with an extremely low corner
frequency. It removes the low frequency drift of the microphone(noise and DC o↵set).

Variable Gain Amplifier and Biasing Circuit

The Biasing Circuits OS1 and OS2 are used in this variable gain amplifier stage to better analyze
our signal. It consists of a DC o↵set followed by a level shift. OS1 does the DC o↵set by centering
the signal between 0V and 3.3V. OS2 does the level shift, which serves to transition the reference
voltage for the non-intervting op-amps to be 1.65V instead of ground. This way the DC o↵set does

1



not get amplified. Lastly, the variable gain amplifier is a non inverting op-amp whose gain can be
adjusted by changing its corresponding potentiometer.

Filtering

The signal was filtered through a band-pass filter in order to remove noise from aliasing. This was
built using a second order low pass and high pass filter. Together the filters serve as a band pass
filter by filtering out noises which are not in the range of voice commands we want. We put bu↵ers
between the two because without the bu↵er, the transfer function we want is no longer of a pure
band-pass filter. The values and equations we used to create our filter can be found in the next
section.

Gain and Frequency Response

Our corner frequencies were calculated using f = 1
2⇡RC. Using this model, we found that our low

pass filter used a resistor of 5100⌦ and capacitor of 10�9 F creating a cut o↵ frequency of 3120Hz.
For the high pass filter, we used a resistor of 2000⌦ and capacitor of 10�8 F creating a cut o↵
frequency of 795Hz. To calculate the frequency response and gain, we used the following equations
below. Note that R1+R2 = 50000⌦. In addition there is also a gain associated with potentiometer
2, which we can control.

H(!) =
✓

1

j!R1C1 + 1

◆✓
j!R2C2

j!R2C2 + 1

◆
(1)

Gainsignal = 1 +
R1

R2
(2)

PCA Classification

Commands

The commands we used were tac (straight far), flamingo (left turn), inspire (straight short), and
crescendo (right turn). The words that worked well each had a unique syllabic pattern in which
words had di↵erent numbers and stresses of syllables. Moreover, saying the word consistently with a
chosen emphasis helped tremendously. In our case, we made sure to sharply emphasize each syllable
of crescendo and not emphasize any syllable of flamingo to accentuate the di↵erence between the
two. Earlier, we had the words Maharbiz and Jaijeet, but we ended up removing them because
they were too similar to flamingo and inspire and were thus being classified incorrectly.

Processing

There was preprocessing of data needed to make PCA and K-Means work accurately. After record-
ing samples of each of our words, we looked at the time domain signals to define a threshold
amplitude and a snippet length to narrow into the chunk of the signal that actually corresponded
to saying the word. Through this, we were able to systematically remove outliers from our record-
ings by seeing where the filtered signal was significantly higher or lower than average. We then
took the PCA and used just the first two principal component to do K-Means classification.

2



Controls

Open Loop Model

The open loop model fed PWM, u[t], to the motors based solely on empirically measured motor
parameters, ✓ and �, as well as a target velocity, v⇤. The open loop controls can be modeled by
the following equations below.

v[k] = d[k + 1]� d[k] = ✓u[k]� � (3)

u[k] =
v
⇤ + �

✓
(4)

v
⇤[k + 1] = d[k + 1]� d[k] (5)

Closed Loop Model

On the other hand, the closed loop model took into account a delta term, which measured the di↵er-
ence between the distance traveled by the left and right wheels and used that to accordingly adjust
the PWM. The closed loop model was necessary because there was error between the model and
the actual behavior, attributed to things like motor inconsistencies, wheel tread, weight imbalance,
and incorrect parameters. With closed loop control, the car used feedback to dynamically correct
for these errors and go straight, whereas with open loop control it strayed o↵ with increasing error
at each timestep. The closed loop controls can be modeled by the following equations below.

�[k] = dL[k]� dr[k] (6)

uL[t] =
v
⇤ + �L

✓L
� kL

�[k]

✓L
(7)

uR[t] =
v
⇤ + �R

✓R
+ kR

�[k]

✓R
(8)

Choosing Controller Values

The delta terms eigenvalue was calculated to be � = 1� kL � kR. Since we were in a discrete time
setting and wanted a stable model, this eigenvalue needed to be in the range (-1, 1). With these
constraints in place, the final k values were chosen through empirical testing and were found to be
kL = 0.9 and kR = 0.7.

Turning

To allow turning, the equation for delta was recalculated using the variables l as the distance
between the center of the wheels, and r as the turn radius. The closed loop control operated
around this new delta, instead of 0 when driving straight, which led to one of the motors being
powered more than the other and thus allowing the car to turn. The equation to calculate the delta
values for turning can be modeled by the equation below.

�[k] =
v
⇤
l

r
k (9)

3



General Comments

Holistically, this project taught us much about the integration not only on a macroscopic level
between the software and hardware aspects of engineering, but also on a microscopic level between
the various modules of the course. Building SIXT33N from scratch improved upon much of our
circuit design and debugging skills and also taught us much about the application of software to
both classification and signal processing. In hindsight, design choices played a large part in the
di�culty of the project, as many of our errors came from poor and messy builds that we eventually
had to clean up. Hardware failures such as broken MSP pins or other parts also proved to be
di�cult to debug. Lastly, we learned about the importance of solid data collection especially in
large integrative projects as even the smallest errors grow exponentially in size.

.

Figures

Figure 1: Full Circuit Diagram

4



Figure 2: Closed Loop Control Scheme Block Diagram

5


